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Abstract—A 3D shape signature is a compact representation for some essence of a shape. Shape signatures are commonly utilized

as a fast indexing mechanism for shape retrieval. Effective shape signatures capture some global geometric properties which are

scale, translation, and rotation invariant. In this paper, we introduce an effective shape signature which is also pose-oblivious. This

means that the signature is also insensitive to transformations which change the pose of a 3D shape such as skeletal articulations.

Although some topology-based matching methods can be considered pose-oblivious as well, our new signature retains the simplicity

and speed of signature indexing. Moreover, contrary to topology-based methods, the new signature is also insensitive to the topology

change of the shape, allowing us to match similar shapes with different genus. Our shape signature is a 2D histogram which is a

combination of the distribution of two scalar functions defined on the boundary surface of the 3D shape. The first is a definition of a

novel function called the local-diameter function. This function measures the diameter of the 3D shape in the neighborhood of each

vertex. The histogram of this function is an informative measure of the shape which is insensitive to pose changes. The second is the

centricity function that measures the average geodesic distance from one vertex to all other vertices on the mesh. We evaluate and

compare a number of methods for measuring the similarity between two signatures, and demonstrate the effectiveness of our pose-

oblivious shape signature within a 3D search engine application for different databases containing hundreds of models.

Index Terms—Shape-signature, shape-matching, pose-oblivious.

Ç

1 INTRODUCTION

THE signature of a shape is a concise representation of the
shape that captures some of its essence. A signature does

not fully represent the shape, and it is impossible to
reconstruct the shape from it. However, if the signature
succeeds in expressing some of the shape’s properties well, it
can be used as a succinct shape representative in various
applications. A typical application area for using shape
signatures is 3D shape similarity and matching. In these
applications, signatures are extracted from 3D geometric
objects and used to determine shape similarity. Instead of
comparing the full 3D objects’ models, only the signatures are
compared. This technique accelerates the matching process
in order of magnitude. More importantly, the semantic
meaning of similarity is defined by the signature used for
comparison. For this reason, the properties of the shape
signature itself are of great importance to the success of fast
and effective similarity measurements between shapes.

For example, rigid-body-transformation invariance is
often desired for a 3D shape signature. Many of the recently
proposed shape signatures aimed at capturing some
essence of a shape while being rigid-body-transformation
invariant and often also uniform-scale invariant [1], [2].
Nevertheless, frequently, 3D objects are not rigid as in cups
or chairs, but flexible to change their spatial arrangement or
pose. For instance, a human or an animal 3D model may

come in many different poses: standing, running, sitting,
lying, etc., a pair of scissors or a box may be open or closed.
These models represent the same object although their pose
is different. Many shape signatures which are effective for
matching rigid objects, do not handle pose differences of
flexible objects well. In this work, we concentrate on the
pose-invariance property which is important for shape
signatures. We define a signature which is rigid-body-
transformation invariant, and is expressive to identify and
distinguish between different shapes similar to top-per-
forming previously defined shape signatures. However, it
also remains largely consistent through pose changes of the
same shape (see Fig. 1), outperforming previous methods
when the database contains objects with pose changes (see
Table 2).

Let � be a transformation that changes the pose of an
object O, such as skeletal articulations, and �ðOÞ the
signature of O. Although our signature cannot guarantee
that �ðOÞ � �ð�ðOÞÞ, in general, the distance between �ðOÞ
and �ð�ðOÞÞ is very small and certainly smaller than that of
current 3D shape signatures. Therefore, we term our shape
signature pose-oblivious. The key to our pose-oblivious
signature definition is the use of pose-oblivious features
of the shape. These features are in fact functions defined on
the surface of the mesh, and they remain largely consistent
when the pose of the object changes (Fig. 3). The first is a
novel local-diameter function (DF), which captures the local
shape of the object’s volume. This new function examines
the object’s diameter in the neighborhood of each point on
the surface.

The histogram of the DF function is an expressive
signature regarding the distinction between shapes, and
also carries the pose-oblivious property of the function itself
(Fig. 1). Nevertheless, the spatial distribution of the function
is completely lost. To alleviate this, we use a second
measure, the centricity function (CF), that has been used
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previously [3]. This function measures for each point on the
boundary surface of the object, the average of the geodesic
distances to all other points on the surface. We use the
centricity function as a positional measure and create a
2D signature which is a histogram combining the two
functions’ distributions. This signature gives better discri-
mination results than each function on its own.

2 SHAPE SIGNATURE PROPERTIES

Shape signatures that characterize the global shape of a
3D model are often rigid-body transform and uniform scale
invariant. These include the volume-to-surface ratio, statis-
tical moments, and Fourier transform of the boundary or
the volume of the model [1], [4], [5]. These signatures only
use global properties to characterize the overall shape of the
object. Hence, they are not very discriminative about object
details. The concept of global feature-based similarity has
been refined by comparing distributions of global features
instead of the global features directly using shape distribu-
tions [2]. Global measures as well as shape distributions are
easy to implement, they can be indexed efficiently and
allow for very fast retrieval using the nearest neighbor
algorithm and others. Nevertheless, shape distributions
have their limitations as much of the shape information is
lost by projecting onto distribution descriptors (see, e.g.,
[6]). In general, designing expressive global measures is not
easy and there is still a constant effort to develop signatures
that are rigid body and scale invariant.

The semantics of pose-invariance for articulated objects is
similar to rigid-body transformation invariance in rigid
objects. A human standing, walking or bending still
represents a human. Although 3D models of such objects
can be geometrically different, they should often be
considered the same or close. Hence, providing a pose-
oblivious shape signature is of major importance in
applications such as search engines and shape-matching.

In the context of shape-matching, other works have
shown pose-oblivious results. Specifically, the topology of
3D models is also an important shape characteristic and is
often pose-invariant. Pure topological signatures such as the
Genus, the number of connected components and, in
general, the Betti numbers of the shape [7], are very crude
descriptions and may sometimes even harm shape similarity
measures. The term “topology” is often used to describe the
overall structure of the shape. Toward this end, graph-based
and skeleton-based methods attempt to extract a more
succinct representation that characterizes the shape compo-
nents and the way they are linked together [8], [3], [9], [10],
[11], [12]. In such methods, the object signature is typically
represented in the form of a relational data-structure such as
a graph. Hence, the similarity estimation problem is
transformed into a graph comparison problem. This facil-
itates articulated body matching, since topology is usually a
pose-oblivious characteristic of the object. However, general
graph matching is a very difficult problem, and there is a
need to align the graphs or sometimes even subgraphs. The
graph extraction process is often very sensitive to topology
changes and noise. Furthermore, the cost of graph compar-
isons increases proportionally with graph size, resulting in
relatively slow comparison and retrieval times.

In contrast, our proposed signature carries the efficiency,
simplicity and robustness of shape distribution methods [2],
and is not sensitive to topology changes. It is scale, rotation
and translation invariant, in addition to it being pose-
oblivious. This signature gives very good results using
various metrics and models from the Princeton Shape
Benchmark database [13], and performs even better when
various poses of the same or similar objects are used.

3 RELATED WORK

The problem of similarity and matching of shapes has been
extensively studied in numerous fields such as computer
vision, robotics, molecular biology and others. Many have
focused primarily on matching shapes in 2D images.
Matching 3D models seems easier since it does not require
recognition—the geometry is given, and there is no
occlusion or disrupting external effects such as lighting
and reflections. On the other hand, 3D models typically lack
a simple parametrization domain and, thus, registration
and feature correspondence are more difficult. For a broad
introduction to shape-matching methods, please refer to
any of several survey papers [14], [15].

In computer graphics and geometry processing fields,
the matching of 3D shapes was developed mainly for shape
retrieval. Recently, new methods were developed for the
retrieval of 3D models in the context of a Web search
engine, based on geometric properties rather than textual
ones [1], [16], [17], [13], [18]. In large shape collections, it is
inefficient to sequentially match all objects in the database
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Fig. 1. The local diameter function (DF) signature compared, for

instance, to D2 measure from [2]. The DF is more expressive regarding

the distinction between shapes (a man or a dog), and is more oblivious

to pose changes.



with the query object. For fast and efficient retrieval,
efficient indexing search structures are needed. Numerous
methods exist for analyzing 3D shapes and extracting
different types of shape descriptors, or signatures, that can
be compared to determine similarity between models.
These employ geometric or topological attributes of the
shape, or both.

Signatures which are primarily based on geometric

properties of the shape either use a global measure or the

distribution of a geometric property. Global properties of

the 3D models include statistical moments of the boundary

or the volume of the model [1], [19], and Fourier descriptors

[16], [20], [21]. Histograms and shape distributions measure

properties based on distance, angle, area, and volume

measurements between random surface points [2], [22]. An

additional harmonic-based representation was presented in

[23], [24] which is intrinsically rotation invariant and shown

to provide good matching performance. The Light Field

Descriptor (LFD) represents a model as a collection of

images rendered from uniformly sampled positions on a

view sphere [25]. By measuring the L1-difference between all

rotations and all pairings of positions, it can also be

considered rotation-invariant. Nevertheless, none of these

methods is pose-invariant and they cannot support articu-

lated body matching.

Graph-based methods attempt to extract a structure from

a 3D shape generalizing it to a graph showing how the

shape components are linked together. Some of these

methods use discretization based either on voxels [8], [10]

or on Voronoi and Delaunay complexes [11], to extract a

skeleton or partition the object to its components. These are

then used to create the object’s graph representation. Other

methods use morse functions on the surface to characterize

its topology building a multiresolution Reeb graph [3], [9].

The graph-based representations are often pose-oblivious.

Nevertheless, they are complex and sometimes error prone

due to discretization. They are susceptible to topology

changes. They rely on graph matching which is a hard

problem, and suffer from relatively slow comparison and

retrieval times.

In [26], the authors present a bending invariant repre-

sentation based on multidimensional scaling (MDS). This

representation is an embedding of the geometric structure

of a surface to a small dimensional Euclidean space, in

which geodesic distances are approximated by Euclidean

ones. The method aims at filtering out the “pose” of the

object by bringing all objects to a canonical pose. This

method gives good results on simple isometric surfaces that

share the same geometric structure, but is too sensitive to

modifications and hard to control on general 3D meshes

(see examples in Section 6 for more details).
Other methods take into account local features on the

boundary surface of the shape in the neighborhood of
points. Usually, these techniques are based on matching
local descriptors, such as Spin images or histograms [27],
[28], [29], [30], [31]. Since they describe local surface
measures, they may also be oblivious to global pose
changes. However, they often do not perform well on
global shape matching since their local nature dose not

provide a good signature of the overall shape. Furthermore,
these methods can be inefficient for global matching since
they usually require large amounts of storage space.

In [13], a benchmark model database was compiled and a

thorough comparison of different 3D matching methods was

introduced. For instance, the ground-truth classification

includes separate classes for humanoids that are standing,

have their arms up, or are walking. Some applications expect

all those models to be in the same category. For those

applications, our shape signature can provide more effective

retrieval, while maintaining the efficiency, simplicity, and

robustness of shape distribution methods.

4 THE LOCAL DIAMETER SHAPE-FUNCTION

The idea of the local diameter shape-function is to create a

type of low pass filtering to a diameter measure, which

relates to the medial axis transform (MAT) [32]. In general,

the medial axis of a 3D object is a collection of nonmanifold

sheets. Computing the medial axis and the MAT of a

surface mesh is an expensive process, and the medial axis

itself is difficult to handle [33], [34]. Discrete approxima-

tions such as skeletons depend on voxelization and are

often sensitive to noise. Therefore, we replace the local

shape-radius by a measure of the local shape-diameter, and

use it as a function on the boundary of the object.

We assume that a 3D object is defined using a boundary

surface (e.g., a triangular mesh) which is almost watertight.

On a smooth surface, the exact diameter can be defined by

the distance to the antipodal surface point using the

opposite direction of the normal. On a piecewise linear

mesh, it is difficult to define the exact antipodal point.

Moreover, we want to express the diameter of the object in

the neighborhood of a point, which is different from the

exact distance to the antipodal point.
The Local-Diameter Function: The local shape diameter at

a point on the boundary of the object is defined using a
robust statistics measure of the diameters in a cone around
the direction opposite to the normal of the point (Fig. 2).
By testing more than 1,000 meshes and checking the effect
on the shape signature, we arrived at a procedure with
hard-coded parameters (no manual tuning is required for
various applications or data). First, we use a large opening
angle of 120� for the cones. Second, we sample 50 rays for
each cone. Third, we remove outliers for various reasons.
The top 30 percent and bottom 10 percent of the values are
discarded since some rays may reach parts which are too
close or too distant (up to infinity if the mesh contains
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Fig. 2. Examples of the cone of rays shot to the opposite side of the

mesh.



holes). We also check the normal at the intersection point
and ignore intersections where the normal is pointing in a
similar direction to the origin-point of the ray (this may
happen if there are self intersections or internal parts). The
final shape diameter value is calculated as the average of
the remaining rays.”

This definition of the diameter shape-function (DF) is
invariant to rigid body transformations. To create a function
which is also scale independent we divide the function
values by the maximum diameter of all measures. Further-
more, the diameter shape-function is insensitive to any
deformation that does not alter the volumetric shape locally.
This includes articulated character deformations, skeleton-
based movements, or piecewise-rigid transformations. Still,
there are positions on the mesh where the measure can
change after such deformations. For instance, at the tip of the
elbow of a person bending his arm, the measure can change
considerably. To overcome this, we further smooth the
function values on the mesh by averaging the value of each
vertex with its neighbors (Fig. 3a).

5 THE POSE-OBLIVIOUS SIGNATURE

The local diameter shape-function expresses a good
distinction between the different object parts, which is
oblivious to the object’s poses (see, e.g., [35]). However, a
signature of a 3D shape must be a succinct representation of
the shape, and there is a need to convert the function
defined on the boundary of the object to a shape signature.
This is done in a similar manner as shape distribution
measures in [2]. The key idea is to create an approximation
of the probability density function of the values on the
mesh. For shape distributions, this is done by sampling the
values of the measure (e.g., D1 is the distance of a point to
the centroid of the object, and D2 is the distance between
two random points), and then building the histogram of
values using 64 bins.

Calculating the local diameter on a sample point on the
mesh boundary involves ray shooting and averaging. To
create a histogram of the values, we use a real approximation

of the function distribution on the mesh instead of random
sampling. We calculate the function value for each of the
vertices of the mesh and weight each of them according to its
influence on the boundary. The influence of a vertex is
defined as the area of the triangles surrounding it divided by
the whole boundary area. We use a histogram of 64 entries
and add the weighted values in each bin to define the
signature vector.

This 64-entry DF vector is an expressive signature which is
pose oblivious as can be seen in Figs. 1 and 3. Still, by
converting the function to a one-dimensional histogram, a
considerable amount of information is lost. One of the most
valuable pieces of information which is lost relates to the
spatial distribution of the values of the function. We seek to
augment the volume-function values with some geometric
positioning indicator. Nevertheless, the use of 3D positions or
relative distances to the centroid will damage the pose-
oblivious nature of the signature. Therefore, we use another
relatively pose-oblivious measure of spatial positioning—the
normalized centricity function (CF).

The Centricity Function: The centricity of each vertex is
defined as the average geodesic distance to all other
vertices. For geodesic distance calculations, we use a similar
method to [3] including short-cut edges. We then divide the
centricity value of each vertex by the maximum centricity
value on the mesh to arrive at a CF function value between
0 and 1. The combined histogram of the CF and DF
functions is a 2D array of scalar values between [0, 0] and [1,
1]. This 2D array is created by quantizing the values of the
two functions (32 values for CF and 64 for DF). Hence, each
bin with values ðx; yÞ contains the approximated probability
of a point on the boundary of the mesh to have a DF value
of x and a CF value of y. This 2D rectangular histogram is
visualized as a 2D image with entries mapped to colors (see
Figs. 3 and 5).

Regarding implementation, the basic operation in the
DF calculation is the ray-mesh intersections. This operation is
well known in ray-tracing and can be accelerated accordingly
using search structures. We used a spatial octree built around
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Fig. 3. Pose-oblivious functions and signatures. (a) Four horses colored by the DF (diameter) values (blue is low, red is high) are shown, and

(c) shows the visualization of the CF (centricity) values. In (b), we present the signature histograms (DF on top, CF on bottom, and CDF in the

middle).



the mesh to assist in intersection finding. In general, this
construction does not take more than a few seconds even on
large meshes, and, consequently, computing the diameter
function even on large meshes takes only a few minutes. As an
example, computing the diameter function for more than
1,000 meshes with up to 20K vertices (an average of around
5,000), took around 24 hours, which is less than two minutes
on average. The computation of the CF function is more
expensive, but took at most 10 minutes for the large meshes
(20K vertices). We computed both the DF and CF functions on
all the vertices of a mesh. However, when preprocessing time
is a limiting factor, one can successfully approximate both
functions by computing exact values only on a subset of
vertices and using averaging.

Another important issue of a shape signature is its
robustness to the object’s representation. The local diameter
function is only meaningful on objects which define a
closed volume. This means that objects which contain
nonvolumetric parts, or interior parts, may need some
preprocessing (e.g., plants in some of the PSB examples
[13]). Other objects in the database may contain holes or
missing parts. Furthermore, our approach relies on a good
estimation of the normals of the processed surface. Noisy
models or unconnected polygon soups can cause our
signature to become less reliable. Our outlier removal
method prevent averaging rays with no intersection at all
(infinity-rays), and the smoothing helps to correct discre-
pant values. This introduces robustness to small cracks and
holes in the boundary, meaning we can work with meshes
that do not need to be truly watertight. Similarly, the
centricity function calculation is suitable for connected
models, and, hence, we use virtual linking-edges to connect
different components in objects. Furthermore, by weighting
the function values by the area of influence of each vertex,
the definition of CF and DF signatures are not sensitive to
the tessellation of the object (Fig. 4).

6 EXPERIMENTAL RESULTS

The signature of a shape is usually used as an index in a
database of shapes and enables fast queries and retrieval.

Hence, to achieve accurate results there is a need to define the
distance measure between two signatures. For one-dimen-
sional vectors, such as shape distributions and also our DF
and CF signatures, several options were investigated in [2].
These include Minkowski Ln norms, the �2 measure, and
Earth Mover’s distance [36]. For our 2D signature CDF, we
testedL1 andL2 by unfolding the matrix as a 64� 32 vector of
values, and also correlation coefficient [29] and �2 measures.
In fact, we found that using different metrics on different
signatures may affect the query results and the success
measures. In our experiments, we tested all different types of
metrics for each signature when possible. Although we show
all results (Tables 1, 2, and 3), we found that metrics such as�2

and the correlation coefficient usually give better results.
Although this calls for further investigation, these metrics are
more suitable for measuring distance between histograms as
they give some global measure of difference as opposed to
local point-to-point distance such as Ln norms.

In addition to our three signatures DF (1D histogram
of the diameter function), CF (1D histogram of the
centricity function), and CDF (2D combined histogram),
we implemented the D1 and D2 signatures from [2]
which seem to give best shape distribution results.
Furthermore, we compared our signature to two out of
the three top performing descriptors on the PSB as
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Fig. 4. A model containing a number of connected components and in

different tessellation does not affect the DF and CF signatures.

Fig. 5. An example of different models in various poses with their

2D CDF signatures. It can be seen that models of the same class have

very similar histograms.



described in [13]: The Light Field descriptor (LFD) [25]

(implementation taken from [37]), and the Spherical

Harmonic descriptor (SH) [24] (implementation taken

from [38]).
To compare the effectiveness of the proposed signatures,

we executed a series of shape matching experiments with

three different databases of 3D models:

. Sub-PSB is a database containing around 400 models
from the PSB database. We used the given base
classification, where we joined together classes like
“humans” and “humans with arms outstretched.”
We did not use some classes, such as “plants,” as

they included many nonvolumetric objects or many
nonconnected parts which needed considerable
preprocessing. Similarly, many models in the PSB
contain internal structures, resulting in erroneous
DF calculations.

. ISDB is a database of different articulated figures of

animals and humans containing about 80 models.
. CDB is the union of the two previous databases.

Note that in the combined database, similar classes

from the two databases were merged together.

The models contained anywhere between 200 and
35,000 polygons. Not all models formed a single manifold
surface or even a well-defined solid region. Some models
contained cracks, self-intersections, and/or missing poly-
gons—none of which caused significant artifacts during
rendering with a z-buffer, but all of which are problematic
for some 3D shape matching algorithms. The experiments
were run on a PC with a 3GHz Pentium 4 processor and
1,024 MB of memory.

We evaluated several qualities of retrieval measure-

ments. We used the same parameters as in [13]. For more

details on these methods, the reader is referred to [13]:

. Nearest neighbor: The percentage of closest matches

that belong to the same class as the query.
. First-tier and second-tier: The percentage of models

in the query’s class that appear within the top
K matches, where K depends on the size of the
query’s class.

. E-measure: A composite measure of the precision
and recall for a fixed number (32) of retrieved
results.

. Discounted Cumulative Gain (DCG): A statistic
that weights correct results near the front of the list
more than correct results later in the ranked list
under the assumption that a user is less likely to
consider elements near the end of the list.
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TABLE 1
Various Quantitative Measures Evaluated on the Sub-PSB

Database for Different Signatures

Our CDF signature is slightly lower in performance compared to top
descriptors such as SH and LFD (see Fig. 6).

TABLE 2
Various Quantitative Measures for Different Signatures

Evaluated on the ISDB Database, Which Includes Many
Articulated Characters

The CDF and DF signatures outperform all other descriptors (see
Fig. 7).

TABLE 3
Various Quantitative Measures for Different Signatures

Evaluated on the Combined Database CDB, Which Includes
Only 20 Percent of New Models Compared to the Sub-PSB

Still, CDF is one of the best performing descriptors (see Fig. 8).



We summarize the results into three tables, one for each

database. Table 1 (Fig. 6) presents the results for the sub-PSB

database, Table 2 (Fig. 7) for the ISDB database, and Table 3

(Fig. 8) for the combined database. The two best measures

for each quality measurement are shown in bold in each

column. Examining the results, we can see that the CDF

signature is compatible and only slightly worse than the best

measures for PSB-type models (Table 1). However, for pose

variations, CDF (and in fact also DF) is much better than the

other measures (Table 2). On the combined CDB, even

though the ISDB models consist of less than 20 percent of all

the models, CDF remains one of the best measures (Table 3).

In Table 4, we summarize the results by showing the two

best signatures that achieve the highest results in each

database and quality measure. In most cases, the best results

are achieved using the CDF signature.

We also experimented with another “pose-invariant”

signature based on multidimensional scaling (MDS) defined

in [26]. Although this method gives good results on

isometric surfaces that share the same geometric structure,

it is too sensitive to topological changes and hard to control

on general meshes. In Fig. 11 we compare various examples

of our signature and MDS results.

7 SEARCH ENGINE

To study our pose-oblivious signatures, we have developed

a simple search engine for 3D polygonal models (see Fig. 9).

The motivation is to provide a tool with which users can

retrieve models from a 3D model repository based on their

shape attributes. In the current version, the user selects a

3D model from the database and the application computes

the dissimilarity measure for all models in the database

using the methods described in this paper. The application

then shows the query model and the most similar models in

the database.

Some example results obtained with this 3D search

engine are shown in Fig. 10 at the end of the paper. The

images in the leftmost column show the query 3D models,

while the columns on the right show the closest matches

among the 3D models in our CDB database using CDF

signature. For instance, a query with a human model (top
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Fig. 6. On PSB models (Table 1), the CDF is still compatible with the

best descriptors.

Fig. 7. For articulated characters (the ISDB from Table 2), the CDF and

DF outperform all other descriptors.

Fig. 8. On the combined database (Table 3), the CDF is one of the best

descriptors.

TABLE 4
A Summary of the Two Best Descriptors in Various

Measurements on the Three Databases

We see that in most cases, the best results are achieved with the CDF
signature.

Fig. 9. A screen shot from the model search engine application.



row) returns all humans in various poses; a query with an

ant model returns a collection of ants and spiders with one

helicopter and a turtle. A query of an airplane, which is a

complex object with internal parts, returns three chairs.

In all examples, the query time on close to 500 models

took under a second. For larger databases, more sophisti-

cated indexing methods can further accelerate the perfor-

mance. Even though this 3D search engine is rather simple,

it shows the potential of pose-oblivious signatures for more

intuitive search results. A more thorough examination of

the results can be seen on our Web site at http://

www.faculty.idc.ac.il/arik/PoseOblivious/. In this site,

we have precalculated all results of queries on the CDB

database and present them using images and html brows-

ing. This site compares the results of the queries using CDF,

LFD, SH, and D2 descriptors.

8 DISCUSSION AND CONCLUSIONS

In this paper, we have described a new type of 3D-model

shape signature. This signature is expressive enough to

discriminate between different models, and carries a

number of attractive properties: it is rigid-body transforma-

tion and uniform scale invariant, it is not sensitive to

topology changes of the model and, most importantly, it is

pose-oblivious, i.e., it is insensitive to pose changes of the

same object. The new signature achieves good performance

and retrieval results for different classes of 3D models with

the efficiency of comparing histogram signatures.

Evaluating the results on any database strongly depends

on the definition of the classes and the number of models in

each class. The PSB does not contain many articulated models

in different poses. For this reason, we created a new database

with 80 percent of its models from the PSB, and the rest,

articulated models. Still, we show that the shape-oblivious
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Fig. 10. Examples of similarity retrieval results for shape matching queries using the CDF signature and CDB database. The first column on the left

shows the query model and the other columns show the first eight closest models from the database in ascending order.



signature works well on the combined database and is much

better on both natural or articulated objects. Its performance

is reduced when the models include internal parts (Table 5).

One possible solution to this is to combine several signatures

together when building a 3D search engine.

A strong limitation of our approach is that the calcula-

tion of the diameter function is unreliable on nonvolumetric

models, or on models which contain internal structures. For

this reason, we could not reliably process many of the PSB

models, and for the others, the results were not accurate. In

many ways, the definition of a signature which is both

effective and highly robust for object representation,

remains a challenge. We conclude that, although our shape

signature achieves good results for a general-purpose

database of models, it is best suited for a situation where

articulated deformations are of importance.

In the future, we would like to enhance the calculations

of the diameter function to cope with nonhollow objects as

well. We would also like to investigate the issue of

comparing two-dimensional signatures and its effect on

the matching performance. Another possible direction for

research is the development of pose-oblivious signatures

that can deal with partial matching.
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Fig. 11. Comparison of our CDF signature (middle row) and the MDS embedding in 3D (third row) for nine objects from our database. Examples (a)-

(c) show that similar objects in similar poses can be mapped by MDS to different signature poses. The right foot is once in the front and once in the

back. This can cause the matching to fail. In this case, the MDS embedding enhanced the problem of distinguishing between different poses.

Examples (e) and (f) show that the MDS is extremely susceptible to topology changes. The geometry of these two examples differs by two triangles,

while the MDS embedded results exhibit large differences as can be seen. Examples (g)-(i) show the inability of the MDS method to handle objects

with complex geometry and a number of disconnected components. Last, examples (j)-(l) show how sometimes for relatively simple objects, MDS

can map similar objects to different signatures and different objects to similar signatures. In this example using MDS, object (k) will match object (l)

and would not match object (j). Note that the CDF signatures do not demonstrate such problems.
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TABLE 5
Quality Results from Classes of Models in CDB of the CDF

and LFD (LFD was Taken as One of the Top Performing
Signatures on the CDB)

Natural or articulated objects are matched better using CDF while, for
some complex artificial objects, LFD can outperform CDF also because
the diameter function is less reliable.
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